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Abstract-We show that dyadic scales may not be sufficient for the 
detection of masses in mammograms: a lesion may be too blurred 
on one scale, and then too fragmented at the next.  In this paper, 
we report on the preliminary evidence of our study using a 
continuous wavelet transform in two dimensions with arbitrary 
positioning of a wavelet’s center frequency channel tuned to the 
mass detection problem.  Our goal is to detect masses in dense 
mammograms whose diameter is smaller than 1 cm.  The aim is 
to be able to find the scale where the mass is best represented in 
terms of analysis. 
Keywords –  Mammography, wavelet, expansion, mass detection, 
scale. 
 
 

I. INTRODUCTION 
 
An initial study in one dimension helped us observe that 
dyadic scales are often not sufficient to detect a mass in a 
dense mammogram [3].  Below we show this by a continuous 
wavelet transform, which computes the decomposition on 
voices between traditional dyadic scales. 
 

II. METHODOLOGY 
 

1)  Voices and octaves:  It is possible to expand a 
signal more finely and compute scales between octaves of 
traditional dyadic expansions by voices [1].  A voice 
constitutes a subdivision of an octave.  If we consider a 
wavelet mother ψ , a family of wavelets 
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voices means finding N different frequency channels, which 
correspond to the N frequency localizations of [2], 
all translated by the same step (Fig. 1b).  Such a lattice can be 
viewed as the superposition of N different lattices of the type 
shown in Fig. 1a, stretched by fixed amounts in frequency.  
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If ˆ ( )ψ ξ , which we assume to be even, peaks around 0ω± , 

then ˆ jψ will be concentrated around 
1
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−
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way as in the dyadic case.  If ŷ has two peaks in frequency 

at 0x± , 
,

ˆ ( )m ny x then peaks at 02m x±  which are two 

localization centers of ψm,n. 
 
The equation computing the scale for source given “octave”, 
“current voice” and “number of voices” is 

_
_2

current voiceoctave number voicesscale
+

=  [3]. 
 
Moreover, we adopt the following convention: the first octave 
(octave number zero) corresponds to the width between scales 

1
_1 2number voices+  and 2.  The dyadic scale of an octave is the 

last voice of the octave (scale = 2octave+1).  In Fig. 2, we 
consider a signal of 512 points (29).  This means 9 octaves 
(octave 0 to octave 8).  The coarsest scale is 512, the finest is 

1
_1 2number voices+ .  For example, when we display a second 

voice of the fourth octave (four voices per octave computed), 

we obtain the scale 
24
42

+ , that is to say scale 23. 
 
 

2)  One dimensional experiment:  We applied programs 
from libraries in LastWave and Matlab, using a continuous 
wavelet transform and a discrete wavelet transform.  
LastWave is a wavelet signal and image-processing 
environment, written in C [4].  Wavelab is an extension of 
Matlab.  For the CWT, we concentrated on the first and the 
second derivative of a gaussian function (Mexican Hat 
wavelet).  We processed phantom signals with three masses of 
distinct sizes using gaussian additive noise. 
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Fig. 4. 1D sections of a real mammogram. 

 

(a)   (b) 
Fig. 1. The time-frequency lattice: (a) for the dyadic wavelet transform, ψm,n is 
localized around 2mnb0; a0=2 and we assume b0=1; (b) for a scheme with four 
voices, the different voice wavelets ψ1, …, ψ4 are assumed to be dilatations of 

a single function ψ, 
1 1

4 42 2( ) ( )
j j

j x x
- -- -

=y y . 
 

 

 
Fig. 2. The time-frequency lattice for a scheme with four voices per octave, 

including the scale axis. 
 
 
We plotted two scan line profiles (Fig. 4) of a real 

mammogram (Fig. 3). 
 

 

 

 

 

 
 

 

Fig. 3. Real mass from a mammogram. The white lines show the 
locations of the extracted profiles corresponding to Fig. 4. 

 

 
As shown in Fig. 4, we added gaussian noise on the phantom 
mass so that the 1D signal had approximately the same shape 
as a real mass.  Fig. 5 shows this representation.  

 
Fig. 5. Phantom signal with an added white gaussian noise of variance 0.1. 

 

 
Fig. 6 depicts the results obtained without downsampling.  The 
signal was composed of masses with a white gaussian noise of 
variance 0.1.  The wavelet was  Mexican Hat. a

 

 
 

 6. Analysis by a DWT on a phantom with gaussian noise (var = 0.1). WFig. e 
show approximation and detail signals at scales 8 (left) and 16 (right). 
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3)  The 2D CWT:  We began the 2D study with phantom 
masses of white objects on a black background with the 
addition of white gaussian noise of variance 4.  We applied a 
bias to the magnitude values to preserve the waveform shape 
and make the signal purely positive [5].  Next, we performed 
the analysis on a cancerous mass from a mammogram (Fig. 3).  
We show the biased unthresholded results in Fig. 7, and the 
thresholded values in Fig. 8. 

 
 

Fig. 7. CWT_2D at octaves 4 to 6, four voices per octave. No thresholding on 
biased coefficients. 

 
 

Fig. 8. CWT_2D at octaves 4, 5and 6, four voices per octave. Coefficients are 
biased and thresholded among scales (10 for scale 38 to 20 for scale 128). 

 
4)  Fractional Splines:  We have more recently 

focused on the Fractional Spline Wavelet Transform [6,7].  
We have extended the implementation to two dimensions, 
which was described originally by M. Unser and T. Blu [8].  
We used orthonormal filters to compute the details (horizontal, 
vertical and diagonal) and the approximation coefficients of 
the image by applying the filters, 
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where  is the autocorrelation filter of degree ( )zAα α . 
 
The transform is computed for a real mass along the scales for 
different values of the spline parameter α (Fig. 9). 
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Fig. 9. DWT in 2D at scale 4 and 8, for 4 values of α. 
 
As shown in Fig. 9, we do not always observe a good 
representation for different values of the parameter α.  
However, we clearly observe that the detection is better for 
α=0.2.  The parameter of the spline is continuous (α>-0.5).  
Therefore, it is interesting to make the parameter vary in order 
to find the best basis, which suits well a given mass size.  
However the present transform is only computed at dyadic 
scales.  With a continuous analysis, which would allow 
decomposition on voices between these scales, we may obtain 
a richer parameter space so as to identify a best basis for mass 
detection. 

 
 

III. DISCUSSION 
 

Given the results in one dimension, we then 
implemented a 2D continuous wavelet transform.  Our goal 
was to now find the most suitable scale to detect a mass of 
arbitrary size.  To find the best scale, we displayed the 
maxima of the coefficients along scales, the third dimension 
giving the magnitude of the maxima at each scale.  In addition, 
we plotted the correlation between the original mass and the 
coefficients of the CWT at each scale.  We expected to find 
different optimal scales according to the size of a mass.  We 
tested this by carrying out our algorithm on three different size 
masses.  We first computed for each mass the CWT in 2D on 
9 possible octaves (3 voices per octave).  Then for each octave 
and scale we plotted the maxima of the coefficients of the 
wavelet decomposition as shown in Fig. 10. 

 

 
Fig. 10. Evolution of the maxima of the cwt2d across scales. 
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The positions of the maxima of the decomposition were at 
scales 40, 81 and 128 for small, medium and large masses 
respectively. 
 
Next, we performed the CWT in 2D on the same number of 
octaves and voices.  For each scale we calculated the 
correlation between the original image without noise and the 
2D CWT decomposition as shown in Fig. 11. 
 

 
 

Fig. 11. Correlation between the original image and the biased values of the 
decomposition. 

 
The positions of the maxima of the correlation were at scales 
64, 102 and 161 for small, medium and large masses 
respectively. 
 

The most suitable scale using the method of the maxima 
evolution was not the same as the scale identified with 
correlation.  Next, we attempted to find the best scale for a 
real mass.  This time, the best scale to detect the real mass was 
the same for both methods (maxima evolution and correlation) 
at scale 161. 
 
We also considered a very noisy signal (variance 4), for 
robustness.  We analyzed the maxima of the coefficients and 
the correlation for different noise settings.  From these results 
we observed that both methods identified same scale values 
regardless of the amount of added noise. 
 
 

IV. CONCLUSION 
 

Our studies in one and two dimensions suggest that 
dyadic scales are often not sufficient to detect a mass in a 
dense mammogram.  We showed the advantage of a 
continuous wavelet transform, which computed an expansion 
on voices between the common dyadic scales.  We saw on real 
images of masses extracted from digitized mammograms that 
a correlation method between a known mass and the values of 
computed coefficients yielded approximately the same results, 
as a maximum method evolution.  Thus, this study suggests 
that it is possible and of value to tune an analysis between 
octaves, for the detection of subtle masses in mammograms. 
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